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ABSTRACT

Acoustic tomography signal transmissions in the Monterey Bay is
modelled using the time-domain parabolic equation method of Collins and
Westwood (1991). Comparison of the model output with the measured
arrival structures obtained in Monterey Bay in 1988 shows that this
Fourier synthesis can produce good agreement with data. Furthermore,
identification of the measured modal arrivals is possible by decomposing
the PE model output into individual normal modes. Modal identification
provides for the application of tomography in shallow water.
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L INTRODUCTION

In December, 1988, phase-encoded acoustic signals were transmitted

continuously for four days in the waters off Monterey, California to investigate

the feasibility of using tomography for ocean interior and surface monitoring in a

coastal environment. 1 4 Sound arrival structures were measured from a source

(center frequency of 224 Hz and bandwidth of 16 Hz), located in the deep, 881 m,

sound channel to several receivers on the shallow, 100 m, adjacent continental

shelf (Fig. 1). The path from the source to the receiver at Station J is shown in Fig.

2. Every 16 received 1.9736 second time periods were coherently averaged. The

squared magnitude of every other averaged sequence is displayed as a function

of time in Fig. 3, for Station J starting on December 14. Stable arrival structures

were observed over the duration of the experiment for this path.

A successful application of tomography depends upon the stability,

resolvability and identifiability of the acoustic arrivals. If acoustic ray or mode

arrival structures are stable, and the individual arrivals have sufficient signal to

noise ratio (SNR) and are resolved in time, then the travel times of the rays or

modes can be estimated over the duration of the experiment. It is the nature of the

acoustic tomography technique that travel time perturbation time series be

calculated as the differences between the measured arrival times and modeled or

predicted times of arrivals. It is these time series which are the data for the inverse

problem. Therefore, to calculate the perturbation, the identification problem in

tomography must be solved where actual acoustic ray or mode arrivals are

associated with modeled or predicted arrivals. The arrivals in deep water can be

identified using ray theory.5-7



Ray tracing techniques had mixed success in modeling the propagation in

the shallow water of Monterey Canyon2, and in the Florida Straits.8 In both these

cases, the number of rays present in shallow water became large enough to

prevent the identification of individual rays using a single receiver. In addition,

Smith found that acoustic rays were extremely sensitive to the exact bathymetry

specification of the Monterey Canyon continental slope.3

A full wave approach provides a more realistic model of the transmitted

signal in the presence of large bathymetric changes. The parabolic equation

method developed by Collins 9-13 was chosen for this purpose due its energy

conservation scheme, and its ability to efficiently incorporate higher order terms

in its approximation of the Helmholtz equation. The steep continental slope gives

rise to higher order terms of significant magnitude, and Collins showed that

energy conservation is essential when modeling slopes in excess of ten degrees. 9

Sound arrival identification is accomplished by the decomposition of the

pressure field generated by the PE model into normal modes. Additionally, this

process provides increased physical understanding of mode coupling and modal

sound transmission. Tomographic inverse methods using normal mode travel times

have been formulated within the context discussed by Munk and Wunsch for the

ocean interior, and Miller et al. for the surface. 1,4 5
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Figure 2. Three-dimensional section of Monterey Bay with source (A) and
Station J locations marked.
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Figure 3. Station J measured 1.9736 second segment averages vs time
received (decimal hours starting on December 14, 1988 PST). Every other 16

segment a,# orage is plotted for visual clarity.
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IL PRESSURE CALCULATION USING FOURIER SYNTHESIS

1. A I ME DOMAIN APPROACH

The receiver time domain pressure signal can be determined, under the

assumption of linearity and time invariance, as a convolution of the source

pressure and the impulse response of the ocean waveguide: 14

p(rr, z, t) = p(ro , zo , t-'C)h(r o , zo, rr, z, t)dt (1)

where p is pressure, r0 is the source range, rr is the receiver range, zo is source

depth, Zr is receiver depth and t is time.

The Fourier transform of the convolution integral in the time domain is a

multiplication in the frequency domain:

P(rrz,f)=P(ro,Zo,f)- H(ro,zo,rr,z,f) (2)

Where P and H are the Fourier transforms of p and h respectively such that:

p(rr', z, t) = f0 P(rr, Z, Oe-n'df (3)

and

6



h(ro, zo, rr, z, t) = f H(ro, zo, rr, z, f)e-i2nftdf (4)

Therefore, the pressure in the time domain can also be determined from the inverse

Fourier transform of (2):

p(rrz,t) = f.o P(ro,zo, f)H(ro, zo,rr,z, f) e-i2'1ltdf (5)

2. DETERMINATION OF THE TRANSFER FUNCTION

The Helmholtz equation governs the sound pressure disturbances excited

by a point harmonic source. Therefore, the transfer function can be obtained by

solving the Helmholtz equation at different frequencies. Allowing for density

variation, the Helmholtz equation is:

pV. ('Vp) + k2p =-4n5(2- ) (6)

where k is the wave number, p is density, x is the position vector, and Xs is the

spherical point source position vector.9 Semi-analytical methods such as

geometric optics (i.e. ray theory) and separation of variables (i.e. normal modes or

fast field), as well as pure numerical schemes such as the parabolic equation

methods, can be used. However, as diffraction and dispersion can become

important at low frequencies, transfer functions obtained using full wave models,

such as normal mode or parabolic equation methods, are better. Normal mode

theory is most easily used in ocean environments which are horizontally stratified.

Methods exist which account for mode coupling effects resulting from non-

horizontal stratification and rough bathymetry. 1516 However, transfer functions

7



created using normal mode methods may require significant processing time and

storage for deep water regions where many modes are excited. Additionally,

separability of the bottom boundary condition can become questionable if rough

bathymetry exists.

In the past, the parabolic equation method has been limited to modelling

narrow angle sound energy propagation. However, current parabolic acoustic

models have been able to model sound with propagation angles close to 90

degrees.9-13 Furthermore, rough bathymetry and variable stratification are easily

implemented. Transfer functions constructed using parabolic approximations are

especially suited for low frequency, shallow water, rough bathymetry ocean

conditions.

3. PARABOLIC APPROXIMATION

Parabolic equation methods represent the acoustic pressure as the product

of two functions:

p(r, z) = u(r, z)v (r) (7)

where r is the range from the source to the receiver, so that r = rr- r0.

Computation time for a numerical solution is then reduced by expressing rapid

variations with range analytically, and leaving the slower variations in range to be

determined numerically. The analytic function v(r) changes rapidly with range,

while the numerical function, u(r,z), slowly varies in range but can vary rapidly

with depth.

Substituting (7) into the Helmholtz equation and neglecting the the

backscattered field results in a separable equation for the function v(r) which has

an exponential form. Following Collins11, v(r) is:

8



v(r) = kor (8)

Substituting for v(r) and factoring results in a parabolic equation for u(r,z) which

includes an unwieldy square root operator:au =-iko ( l+X- - 1u (9)

where

X= (k2 - k + zr )z

The square root operator has been simplified using either a

Taylor series 17, a rational function 8 or a Padd series9-13 approximation. The Finite

Element Parabolic Equation (FEPE) of Collins uses a family of Pad6 series to

create higher order parabolic equations which are accurate for propagation

angles close to 90 degrees. 9-13

Using Pad6 series, the FEPE approximates the square root operator as:
n

_+ -I aj n X

j=l 1+bj,nX
2j, n 2 -n1 (10)

n ,= cos2 JR
2n+1

The number of Pad6 terms used determines the angle of sound propagation which

can be accurately modelled. While the use of one term is equivalent to the wide

angle PE, having an approximately 40 degree propagation angle, the use of four

terms provides accuracy of close to 90 degrees depending on the ocean

environment. The amount of computer time required increases proportionally with

the number of Pad6 terms used.9-13

Substituting the parabolic form for the frequency domain transfer function

(Eq. 7), the time domain pressure signal can be evaluated as:

9



p(rr, z, 0) 0_0 P(ro, Zo, fOu(r, z, f)v (r, f)e-i2-9 ftdf (1

Substituting for the chosen value of v(r)

p(rr, Z, 0)= P(ro, Zo, f)u(r, Z, f)1-eiw e-i'nftdf (12)

2itf
Using the fact that ko - and combining exponential terms, (12) becomes:

p(rr, z, t) P~o.z ~~,zfL x47t- d (13)

With a change of time variable:
t = t - r

r Co0

where -o is the reference travel time of a plane wave solution, the resultingco

pressure is

p(rr , VA) = P(ro,~ z, u(r, z, f)-'- e-iFtdf (4

The integral expression is solved numerically using the inverse fast Fourier

transform (IFFT).

10



IM MODEL USE

1. MODEL INPUT

Modifications in FEPESYN, a prototype Fourier synthesis code

developed by Collins9-13 allowed for its use in modelling the acoustic

propagation from the transmitter to Station J in the Monterey Tomography

Experiment. The Blackman function was used to represent the transmitting signal

in the frequency domain. The center frequency of the function was 224 Hz, the

same as the actual source, with the function having zero values below 212 Hz

and above 236 Hz to represent the source's ± 12 Hz bandwidth (Fig. 4). The

Blackman function provided a sharp but smooth cutoff above and below the

bandwidth, reducing the sidelobes in the time domain. The inverse Fourier

transform of the Blackman function closely approximated the output of the

correlator receiver used in the experiment.

The bathymetry used was obtained from NOAA 19 and had a grid spacing

of 250 meters. The SVP used was obtained near the transmitter during the 1988

Monterey Bay Experiment. The small variation between the sound velocity

profile measured at the source and the receiver allowed the deep water SVP to be

used along the entire sound path (Fig. 5). Bottom sound speed, density and

attenuation were taken to be the average values for continental shelf silty sand as

obtained by Clay and Medwin. 20

The sampling interval in the computational example is one millisecond (ms).

The resulting Nyquist frequency of 500 Hz, is more than twice the maximum

frequency used of 236 Hz. The time window starts 440 ms before the expected

11



arrival of a plane wave solution, travelling at a speed of co, and arriving at time

t = r/co. The arrivals are tracked for 1600 ms after the reference plane wave

solution arrival.

2. COMPARISON OF MODEL OUTPUT WITH DATA

The resulting wide angle, one Pad6 term, computer modelled output

accounts for sound energy propagating accurately up to 40 degrees, and shows a

series of arrivals starting 140 ms after the plane wave reference (Fig. 6). A large

double peaked pulse is shown between two smaller peaks. Taking the higher

order terms into account, using two Pad6 terms, the constructive and destructive

interference of the higher order energy is seen as an increase in the amplitude of

the predicted signal, and a narrowing of the double peaked pulse to a single peak.

The major pulse amplitude is also increased (Fig. 7). The computer output from

the higher-order example shows good qualitative agreement with the measured

station J data.

The predicted and the measured results show an initial arrival, followed by

a narrow, larger pulse quickly followed by a series of smaller amplitude arrivals.

The spacing between the pulses and the relative amplitudes of the arrivals, both

plotted as amplitude squared in Fig. 8, are in agreement. The excellent agreement

of the higher-order model output with the measured data, versus that of the lower

order output, demonstrates the importance of including the higher-order terms in

modelling the Monterey Bay propagation. Higher-order terms can be important in

cases where steep bathymetry exists such as in this example.

Model output shows a sensitivity to the horizontal range step chosen. The

reproduction of the measured results, by the time domain model, required the use

12



of a 15 meter range step. The use of a larger range step produced arrivals of

excessive width, as shown in Fig. 9.

bh~k 3-. Perm 1%"as. Dm

0. -------------- -

0.4

0.1

210 215 220 225 230 235 24

ft.qwfty (Htl

Figure 4. Frequency domain source function used by the Finite Equation
Parabolic Equation (FEPE) Fourier synthesis parabolic equation model for

the Monterey Bay Experiment.
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S-l5000.
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-2500
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Figure 5. Sound velocity profile obtained from CTD measurements on
December 14, 1988 near the source.
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Figure 8. Comparison of magnitude squared model output and measured data
for Station 3.
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Figure 9. Magnitude squared model output at Station J using a 25 m range
step and two Pad6 terms.
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IV. NORMAL MODE APPLICATIONS

L MODAL DECOMPOSITION

Modal decomposition provides a physically meaningful display of output

from the parabolic approximation. In addition, normal mode travel time

information can be used for tomographic inversion. 14 5 In particular, time domain

modal fluctuations can be used to determine the surface frequency spectrum, as

verified by surface buoys deployed in the 1988 Monterey Bay Experiment. 1,4

Sound energy arriving at a receiver can be described as the sum of normal

modes (Fig. 10) Zm(z):
00

p(r,z,t) - am(r,t). Zm(r,z,t) (15)

where p is pressure, am is the coefficient, Zm is the eigenfunction, and m is the

mode number. Although there are an infinite number of modes possible, only

finite number of modes will be trapped in the ocean wave guide, depending on

the frequency, the depth of the channel, the SVP and the boundary conditions. 20

The number of trapped modes at the receiver can be estimated by approximating

the coastal shelf area of Station J as an isospeed sound channel bounded by a

pressure release surface and a sediment bottom.

Thirteen trapped modes are estimated using the equation:

m <5 -(2hcos o) + (16)2
where m is the number of modes trapped, f is frequency, co is the sound speed in

the channel, h is the water column depth.20 The critical angle, 0c, is defined by

17



sin _ 1 (17)
C0 Cl

where cl is the sediment sound speed.

The modes are computed by solving:

-d M=0 (18)

subject to the boundary conditions. The actual SVP and a finite difference

approximation are used.

Since Zm's are orthogonal functions, i.e.,

o Zm(r, z)Z(r, z)dz = 8mn(Z) (19)

the coefficient am's can be obtained by integrating the products of the computed

pressure and the normal modes:

am=fo p(r, z, t)- 4(r, z)dz (20)

The pressure time series can be seen at the Station J receiver for each mode in Fig.

11.

2. MODE IDENTIFICATION

Acoustic tomography requires that measured sound arrivals be identified

with the predicted arrivals. The maximum amplitude measured arrival is coincident

with the maximum predicted sound arrival. The sound arrival at station J can be

seen in Fig. 11 to be clearly dominated by mode 6 sound energy. The second

largest amplitude arrival, which just precedes the largest arrival, is also dominated

by mode six. However, modes one, five and eight are also represented. The use of

18



a hydrophone array instead of a single receiver should make it possible to

measure individual modal arrivals.

3. MODE COUPLING

Sound energy can be seen to move from higher to lower modes as sound

moves up the slope in Monterey Bay to Station J on the continental shelf, (Fig. 12

and Fig. 13). Relating normal modes to rays facilitates the explanation of this

occurrence. In this context, ray behavior can be seen as the constructive

interference of neighboring normal modes. Parameterizing mode quantities by

mode number and equivalent ray angle allows an "equivalent-ray" to be found

such that each resonance is centered at an equivalent-ray angle. These rays are

"fuzzy" in that they have finite width, and then a sound beam may be used to

represent a ray at a finite. frequency. 2122 The ray incident angles increase as

sound travels up the slope due to bottom interactions. Ray equivalent angles of

modes also increase as the depth decreases.

Mode energy is concentrated in higher modes at the base of the slope,

with mode 18 dominant. The equivalent-ray angle is approximately 2.5 degrees,

as shown in Fig. 14. A ray propagating at this angle will interact with the bottom

only once on the slope. The bottom interaction will increase the incident angle at

the continental shelf to approximately 12 degrees. The mode which has the

resulting ray-equivalent angle of 12 degrees is mode six. Therefore, we would

expect that mode 6 energy will be dominant as is explained using a ray analogy.

19
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Figure 11. The magnitude of the model output pressure at the Station J
receiver as a function of time and normal mode number.
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Figure 12a. The magnitude squared for coefficient am time series as afunction of mode number at ranges 42.50 and 45.25 km.
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V. CONCLUSIONS

Fourier synthesis using the Collins-Westwood parabolic equation model is

effective in modeling short-duration time domain signals. Time domain parabolic

equation models can be used effectively in acoustically complex areas, such as

Monterey Canyon. Modeling propagation in areas with steep slopes require a

method which includes higher order terms and which conserves energy.

Model output from the Fourier synthesis parabolic equation model may be

decomposed into normal modes. This provides a tool for understanding acoustic

sound transmission. The use of a multiple hydrophone array should allow

identification of individual modal sound arrivals, thereby going a long way

toward solving the forward problem for acoustic tomography in shallow water.
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